Sense of Number Visual Calculations Policy

Full Troining Edition for Newchurch Community Primary School July 2014

 by Dove Godifrey, Anthony Reddy \& Lourence rilickeFor sole use within Newchurch Community Primary School.

> "A plicture is worth 1000 wordsli www-senseofinumber-coulk

Guide to using a Visual Calculations Policy

The Sense of Number Visual Calculations Policy provides a visual representation of a school's counting policy and its written and mental calculation policy.

A bespoke VCP is created by Dave Godfrey when a school chooses the slides, including any alterations/additions, they require. The school logo and school name are added, and the sample edition watermarks are removed.

Typical uses:

Classroom: The slides are printed out (e.g. A4) and the appropriate slides are displayed within each classroom for continual reference or on a working wall. Teacher Reference: The slides are printed out (e.g. 9 slides per A4 page) and inserted in the teacher's planning folder.
Parents: The slides are used to communicate to parents the methods being taught and used within school.
Website: Slides from the VCP are inserted on a school's maths webpages. (Please note: the VCP should not be made available for download)

Newchurch Community Primary

KC1: Key Concepts!

Addition

$8+2=10$

"What is 8 add 2?" Answer: 10

8-2 = 6

"What is 8 subtract 2?" Answer: 6
"The difference between 8 and $\%$ is ${ }^{\text {® }}$

KC2: Key Concepts!

Multiplication

$8 \times 2=16$

"8 multiplied by 2" means "8, 2 times" or "2 groups of 8"

"8 divided by 2" means "How many groups of 2 are there in 8?" Answer: $\frac{4}{4}$
("8 shared into 2 sets is $\mathbf{\4 ")

s

Calculation Vocabulary

equivalent to =equals
 is the same as balance

+

- Subtraction

Division

Addition Vocabulary

more SUIII

a together

4
Newchurch Community Primary

Subtraction Vocabulary

count back decrease

subtract
count on

- difference between

4
Newchurch Community Primary

Multiplication Vocabulary

multiple

product

times

ots of multiply

X
repeated addition

6
Newchurch Community Primary

Division Vocabulary

Addition Calculation

Subtraction Calculation

Multiplication Calculation

Division Calculation

s

Cla: Number Order

The Numbers must be sald onoe and dways in the oonventlond order

Clb: At a Clance

Subltioling

See att allane hew many are in small oollectlons and attach oofrect number names to such collectlonsu

Newchurch Community Primary

C2a: Number Match One to One Corriespendenoe

Each oblect to be counted must be touched or 4hotuded exactly anoe as the numbers afe sald

C2b: Counting Objects

 Starting Point and Order lirelovance

The oblect oun be touched th any order The starting polnt and order tha which the oblecte are oounted does not ofiect how many there are

C2c: Order Arrangement

The afrangement of the oblects doce not aflect how many there are

C3: How Many?
 Filnel number lis the totell

The lost number said tells thow manyt th the whole collectlon It dose not desortibe the last oblect touched

C4: Arranging

Sets of 5

4

C4a: Arranging

Sets of 5

C4b: Arranging
 Sets of 5 (Non Linear)

C4c: Arronging

Sots of 5 (Non Linear)

s

C5: Counting Forwards

C6: Counting On

C7: Counting Back

C8: Counting in Steps

Al: Objects \& Pictures

"If I have 8 and then 5 more, how many altogether? Answer: 8"

Ala: Largest Number 1st

A2: Counting On

A2a: Counting On
 Brideding 10

A2b: Counting
 Brideding 10s Number

A3: Forwards Jump
 $43+24=67$

A3a: Forwards Jump

$57+25=82$

A3b: Forwards Jump

$86+48=134$

A3c: Forwards Jump

$687+248=935$

A3f: Decimal Jump

$4.8+3.8=8.6$

A3g: Decimal Jump

$5.65+3.29$ = 8.94

A4: Partitioning

$$
\begin{array}{r}
43+24=67 \\
40+20=60 \\
3+4=\frac{7}{67}
\end{array}
$$

A4a: Partitioning

A4b: Partitioning

$86+48=134$

$$
\begin{aligned}
80+40 & =120 \\
6+8 & =\frac{14}{134}
\end{aligned}
$$

A4c: Partitioning

$687+248=935$

$600+200=800$ $80+40=120$ $7+8=$

A4f: Partitioning

$4.8+3.8=8.6$

$$
\begin{aligned}
& 4+3=7 \\
& 0.8+0.8=\frac{1.6}{8.6}
\end{aligned}
$$

A5: Partition Jot

A5a: Partition Jot

A5b: Partition Jot

$86+48=134$ $120+14$

A5c: Partition Jot

A5d: Partition Jot

A5f: Partition Jot

$4.8+3.8=8.6$

A5g: Partition Jot

A5h: Partition Jot

A5i: Partition Jot

$€ 65.00$ + € 0.71

A6: Expanded Column

(A7: Column Addition)
 Additional

(A7: Column Addition)
 Additional:a

(A7: Column Addition)
 Additional:b

A7: Column Addition

A7d: Column Addition

A7e: Column Addition

M HTh TTh Th H T U

A7f: Column Addition

A7g: Column Addition

A7h: Column Addition

A7i: Column Addition
 With Money

A7j: Column Addition

$73.4+5.67=79.07$

MA1: Partitioning

MA1: Partitioning

$43+21=64$

MA1: Partitioning

MA1: Partitioning

MA1: Partttioning

MA1: Partitioning

$4.73+2.21=6.94$

 $\{6$

MA2: Counting On

MA2a: Counting On Year 1

MA2b: Counting On

MA2a: Counting On Year 2

MA2b: Counting On

$58+40=98$

MA2a: Counting On

$85+50=135$

MA2b: Counting On

$534+300=834$

MA2a: Counting On Year 4

$784+60=844$

MA2b: Counting On

$4837+3000=834$

MA2a: Counting On

$837+500=1337$

MA2b: Counting On

$7583+5000=12583$

MA2a: Counting On

$43,826+30,000=73,826$ $+30,000$

MA2b: Counting On

$5,763,947+4,000,000$

MA3: Number Bonds

MA3: Number Bonds

0	-	10	($+10=10$
1	- + 000000000	8	1+9 = $=10$
2	00 +	8	$2+8=10$
8	000 + 0000000	7	$8+7=10$
4	$0000+000000$	6	4 $+6=10$
5	00000 + 00000	5	$5+5=10$
6	000000 + 0	4	6+4 $=10$
7	$0000000+000$	8	$7+3=10$
8	00000000 \& 00	2	8 + $2=10$
8	000000000 +	1	$8+1=10$
10	0000000000 +	0	$10+0=10$

MA3: Number Bonds Year 2

MA3: Number Bonds Year 3

$\underset{50}{43+9+7+21}=80$

MA3: Number Bonds
 Yoat 4

$42+16+28+54=140$

MA3: Number Bonds

 Year 5

 Year 5}
£4.56 + €3.27 + €1.44 = €9.27

MA3: Number Bonds

 Year 6

 Year 6}
$24.25+31.63+21.75=77.63$

MA4: Double \& Adjust

MA4: Double \& Adjust

MA4: Double \& Adjust Year 2

MA4: Double \& Adjust

MA4: Double \& Adjust

MA4: Double \& Adjust

MA4: Double \& Adjust Year 6

MA5: Round \& Adjust

MA5: Round \& Adjust Year 1

MA5: Round \& Adjust Year 2

MA5: Round \& Adjust Year 8

MA5: Round \& Adjust

$345+298=643$ $345+300=2$ $645-2=643$

MA5: Round \& Adjust Year 5

$4645+1996=6641$ $4645+2000-4$ $6645-4=6641$

MA5: Round \& Adjust Year 6

S1: Objects

"What do I get if I take 8 away from 7? Answer: $\mathbf{4}^{\mathbf{4}}$ "

S2: What's the Difference?

"How many more is 7 than 5 ? What is the difference?"

S3: Counting Back

"What do I get if I take 8 away from 12? Answer: ©"
Newchurch Community Primary

S4: Counting On

"How many more is 12 than 9 ? What is the difference?"

S4a: Counting On

"How many more is 88 than 78 ? What is the difference?"

S5: Backwalrds Boing

$68 \quad 70 \quad 75$

S6: Backwards Bounce

\section*{| 64 | 65 | 66 | 67 | 77 |
| :--- | :--- | :--- | :--- | :--- |}

S7: Backwards Jump

(S8: Triple Jumpl)

$87-23=64$

S8: Triple Jump!

S8b: Quad Jump!

$132-5$

S8c: Big Jump!

$356360 \quad 400 \quad 700723$

S8d: Quad Jump Extreme

 $\overbrace{17761800}^{+24}+2000$ (30005042$$
5042-1776=3266
$$

S8f: Decimal T=J!

$13.4-8.7=4.7$

(S9:1OS Jump, 1s Jumpl)

$87-23=64$

S9: 10 s Jump, 1s Jump!

S9b: 10s Jump, 1s Jump!

$132-5$

S9c: 100s, 10s, 1s Jump

S9d: 1000s, 100s, 10s, is Jump

\#3000 4200 \#60 $\ddagger 6$

17764776497650365042

5042 - 1776 = 3266

S9f: is Jump, Tenths Jump!

$$
+4 \quad 40.7
$$

$8.7 \quad 12.7 \quad 13.4$

$13.4-8.7=4.7$

(S10: Expanded Column)

87-23 = 64

(S10: Expanded Column)

75-37 = 38

S10: Expanded Column
 Subtraction ahro arrivn

(S11: Column Subtraction)

(S11:
 Additional:a
 Colunin Subtraction)

(S11: Column Subtraction)
 Additional:b

S11: Column Subtraction

Slld: Column Subtraction
 Th H
 T
 U

Slle: Column Subtraction
M HTh TTh Th H T U

Slle: Column Subtraction

「 $4 . \frac{1}{10}$

Sllg: Column Subtraction

S1lh: Column Subtraction

 WVith Desimels
$12.4-5.97=6.43$

MS1: Counting Back

$46-21=25$

MS2: Counting On

MS2a: Counting On

MS3: Round \& Adjust

(M1: Groups)

"2 groups of 5 counters makes 10 counters
Newchurch Community Primary

M1: Repeated Addition (Eroups)

$5 \times 3=5+5+5=15$

"5 multiplied by 8 " means " 5 , 8 times", which gives " 8 lots of 5^{5} "!

M2: Repeated Addition (Number Line)

(M3: Arrays)

"2 groups of 5 counters" or " 5 groups of 2 counters" - "10 counters altogether"

M3: Arrays

$3 \times 5=15$ or $5 \times 3=15$

M4: Multi Boing!

$15 \times 5=75$

M4a: Partitioning

$15 \times 5=75$

$$
\begin{array}{r}
10 \times 5=50 \\
5 \times 5=25 \\
50+25=75
\end{array}
$$

M5: Grid Method Short Multiplication
 $15 \times 5=75$

$50+25=75$

M5a: Grid Method Short Multiplication $43 \times 6=258$

x	40	3
6	240	18

$240+18=258$

M5b: Grid Method Short Multiplication
 $147 \times 4=588$

x	100	40	7
4	400	160	28

$400+160+28=588$
6
Newchurch Community Primary

M6:
Additional

M6:
Additional a

Expanded Column

" 43 x 6

(6×3) $240(6 \times 40)$ 258

(4 $\times 7$)
(4×40) (4 x 100)

(M7: Column Multiplication)

 H T U

M7: Column Multiplication
 H T U

M8: Erid Method Long Multiplication
 $43 \times 65=2795$
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">x</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">40</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">3</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">60</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">2400</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">180</td>
</tr>
</tbody>
</table>
<table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">5</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">200</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">15</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 5 | 200 | 15 |
| :---: | :---: | :---: |</table-markdown></div>
 $2400+180+200+15=2795$
 为

M8a: Grid Method Long Multitiplioation

$$
243 \times 68=16,524
$$

x	200	40	3	
60	12000	2400	180	
8	1600	320	24	
$=14,580$				
$14580+1944=1,944$				

Newchurch Community Primary

M8b: Grid Method Long Multiplication

$$
203 \times 68=13,804
$$

x	200	0	3
60	12000	0	180
8	1600	0	24
$12180+1624$	$=1,624$		

M8c: Decimal Grid Short Multiplication

$3.6 \times 4=14.4$

$$
12+2.4=14.4
$$

M8d: Decimal Grid Short Multiplication

$$
47.2 \times 3=141.6
$$

M8e: Grid Method Short Multiplication

$$
7.38 \times 6=44.28
$$

x	7	0.3	0.08
6	42	1.8	0.48

$42+1.8+0.48=44.28$

M8f: Grid Method Long Multiplicortion $24.3 \times 2.5=60.75$

x	20	4	0.3
2	40	8	0.6
0.5	10	2	0.15
$48.6+12.15=60.75$			

6
Newchurch Community Primary

M9: Long Multiplication

M9a: Long Multiplication

M9b: Long Multiplication

M9de Coumn Multpilication

M9g: Long Multiplication
 $\begin{array}{llll}\text { Th } & \mathrm{H} & \mathbf{T} & \mathbf{U}\end{array}$
 $\times 48$

 (8×3786) (40 x 3786)

MMI: Jump!

$$
\begin{aligned}
& (9 \times 2) \times 5 \\
& 18 \times 5=90 \\
& (9 \times 5) \times 2 \\
& 45 \times 2=90 \\
& (2 \times 5) \times 9 \\
& 10 \times 9=90
\end{aligned}
$$

$$
\begin{aligned}
& (7 \times 4) \times 5 \\
& 28 \times 5=140 \\
& (7 \times 5) \times 4 \\
& 35 \times 4=140 \\
& (4 \times 5) \times 7 \\
& 20 \times 7=140
\end{aligned}
$$

MM2b: Re-ordering

$$
\begin{aligned}
& (9 \times 8) \times 6 \\
& 72 \times 6=432 \\
& (9 \times 6) \times 8 \\
& 54 \times 8=432 * \\
& (8 \times 6) \times 9 \\
& 48 \times 9=432
\end{aligned}
$$

MM3: Partitioning

$15 \times 5=75$

MM3a: Partitioning

$37 \times 4=148$

$\underbrace{120}_{(30 \times 4)}+\underbrace{28}_{(7 \times 4)}=148$

MM4: Round \& Adjust

$49 \times 3=147$

(50 x 3) $=(1 \times 3)$ \ $/$
 $$
150-3=147
$$

MM4a: Round \& Adjust

$198 \times 4=792$

$(200 \times 4)=(2 \times 4)$ \ / 800-8=792

MM4b: Round \& Adjust

$$
\begin{gathered}
3.9 \times 5=19.5 \\
(4 \times 5)-(0.1 \times 5) \\
1 / \\
20-0.5=19.5
\end{gathered}
$$

MM4c: Round \& Adjust
 $\mathbf{£ 5 . 9 9 \times 6 = £ 3 5 . 9 4}$

($£ 6 \times 6$) $-(1 p \times 6)$

MM5: Doubling

Double $17=34$

MM5a: Doubling

Double $37=74$

MM5b: Doubling

Double 78 = 156

MM5c: Doubling

Double $340=680$

MM5d: Doubling

Double $480=960$

MM5e: Doubling

Double 278 = 556

MM5f: Doubling

Double 768 = 1536

MM5g: Doubling

Double 3.7 = 7.4

$6+1.4=7.4$

MM6: Doubling Table Facts

$16 \times 7=112$ (8×2)
 $$
\begin{aligned} & 8 \times 7=56 \\ & 1 \times 2 \times 7=112 \\ & 16 \times 7 \end{aligned}
$$

MM7: Doubling Up

 $36 \times 8=112$
Double $36=72 \quad(36 \times 2)$

 Double 72 = 144 (36×4) Double 14每 = $288(36 \times 8)$
MM7a: Doubling Up

$125 \times 16=2000$

Double $125=250 \quad(125 \times 2)$
 Double $250=500 \quad(125 \times 4)$ Double $500=1000 \quad(125 \times 8)$ Double $1000=2000(125 \times 16)$

MM8: Mult by pioothen Halve

$$
\begin{gathered}
86 \times 5=430 \\
86 \times 10=860 \\
860 \div 2=430
\end{gathered}
$$

MM8ar Mult byispo then Halve

$$
\begin{aligned}
56 \times 25 & =1400 \\
56 \times 100 & =5600 \\
5600 \div 2 & =2800 \\
2800 \div 2 & =1400
\end{aligned}
$$

MM9: Doubling \& Halving

45×14 $90 \times 7=630$

MM9a: Doubling \& Halving

36×25 18×50 $9 \times 100=900$

MM9b: Doubling \& Halving

$$
\begin{aligned}
& 26 \times 32 \\
& 52 \times 16 \\
& 104 \times 8=832
\end{aligned}
$$

208×4 etc.

MM1O: Factorising

MM1Oa: Factorising

$52 \times 24=1248$
 (52 x 4 \times) \/ $208 \times 6=1248$

D1: Sharing (concept)

"If I share 6 into 2 equal amounts, how
many in each group?" Answer:3

D2: Grouping (concopt)

"How many groups of 2 can Imake out of 6 ? Answer: 8

D3: Division as Sharing

$12 \div 2=6$

"If I share 12 into 2 equal amounts, how many in each group?" Answer: 6

D4: Division as Grouping

$12 \div 2=6$

"How many groups of 2 can I fit in 12?" Answer: ©

D5: Grouping on a Number Line

"How many Es in 20?" Answer: 4

D5a: Grouping en o Number Line Remolinders

"How many Es in 17 ?"

D6: Grouping Grid

D7: Chunking Jump

D7a: Chunking

4×10 4×6

$0 \quad 40$
65
"How many 4s in 65?" Answer: 16『l

$65 \div 4=16 r 1$

D8: Find the Hunk!

 $72 \div 4=18$

D8a: Find the Hunk!

 Remolinder
$65 \div 4=16 r 1$

D9: Mega Hunk!

$136 \div 4=34$

Mega Hunk!

Chunk $120+16$ \downarrow
\downarrow
$30+4$
4

D9c: Mega Hunk!

 Remalinders $394 \div 6=65 \mathrm{r} 4$Mega Hunk! Chunk $360+34$ 1 1

$$
\div 6
$$

$$
60+5 r 4=65 r 4
$$

D9d: Mega Munk! $591 \div 3=197$

D9e: Mega Hunk!

 $5978 \div 7=854$$\begin{array}{ll}\text { Mega } & \text { Mega } \\ \text { Hunk! } & \text { Hunk! }\end{array}$ $5600+350+28$ \downarrow $800+50+4=854$

D9f: Mega Hunk!

$846 \div 5=169 \mathrm{rl}$

Mega
Hunk!
Mega Hunk!

Chunk

$500+300+46$

$$
\div 3
$$

$100+60+9 r 1=169 r 1$

D9g: Mega Hunk! $480 \div 15=32$
 Mega Hunk! Chunk

 450 + 30

D9h: Decimal Hunk!

$18 \div 1.5=12$

D9: Decimal Hunk!

$87.5 \div 7=12.5$

Mega Hunk!

Chunk

Chunk

$70+14+3.5$

(D10: Short Division)
 Additional

$72+4=18$

(D10: Short Division)
 Additional:a

$65 \div 4=16 r 1$

D10: Short Division

$136 \div 4=34$

D10c: Short Division

$394 \div 6=65 r 4$

D10d: Short Division

$591 \div 3=197$

D10e: Short Division

$5978 \div 7=854$

D1Of: Short Division Diriterant Remolinder

169.2 $5 \longdiv { 8 ^ { 3 } 4 ^ { 4 } 6 . 0 }$

$846 \div 5$

D10i: Short Division

$87.5 \div 7=12.5$

(D11: Chunking) $4 \longdiv { 1 8 }$

 $72+4=18$

(D11: Chunking)

$$
\begin{aligned}
& 16 r 1 \\
& 4 \longdiv { 6 5 } \\
& -40(4 \times 10) \\
& -25 \\
& -24 \times 6) \\
& \hline 1
\end{aligned}
$$

D11: Chunking

$$
\begin{aligned}
& \frac{34}{4 \longdiv { 1 3 6 }} \\
& \frac{120}{16}(4 \times 30) \\
& =16(4 \times 4) \\
& \frac{16}{0}(136+4=34
\end{aligned}
$$

Dllc: Chunking

$$
\begin{aligned}
& 6514 \\
& 6 \longdiv { 3 9 4 } \\
& =\frac{360}{34}(6 \times 60) \\
& -\frac{30}{4}(6 \times 5) \\
&
\end{aligned}
$$

Dlld: Chunking

$$
\begin{aligned}
& \frac{197}{3 / 591} \\
& -\frac{300}{291}(3 \times 100) \\
& -\frac{270}{21}(3 \times 90) \\
& -21(3 \times 7)
\end{aligned}
$$

Mega Chunk

Dlle: Chunking

$$
\begin{aligned}
& 854 \\
& 7 \longdiv { 5 9 7 8 } \\
& -\frac{5600}{378}(7 \times 800) \\
& \text { (7 } \times 50 \text {) } \\
& \text { Mego Chunk } \\
& -\frac{270}{28} \\
& -28(7 \times 4) \\
& 0 \\
& 5978 \div 7=854
\end{aligned}
$$

Dllf: Chunking $5 \longdiv { 1 6 9 \mathrm { rl } }$
 $-\frac{500}{346}(5 \times 100)$
 $=45(5 \times 9)$
 $846+5=169 r 1$

Dllg1: Chunking

32 $1 5 \longdiv { 4 8 0 }$

 $=\frac{450}{30}(15 \times 30)$ $=\frac{30}{0}(15 \times 2)$
D11g2: Chunking $15 \frac{32}{480}$ $=\frac{150}{330}(15 \times 10)$ $=\frac{150}{180}(15 \times 10)$ $-\frac{150}{30}(15 \times 10)$
 $$
=30(15 \times 2)
$$
 $480 \div 15=32$

D13: Long Division

26r21 $3 7 \longdiv { 9 8 3 }$
 - 74
 $$
\begin{array}{r} 243 \\ =\frac{222}{21} \end{array}
$$
 $983+37=26 r 21$

Sense of Number Calculation Cards

by Dove Godfrey

dave@senseofnumber.co.uk Tel: 01904778848
The following slides show the colloullation $43+24$ using a variety of resources and manipulatives.

A: Base 10

$43+24=67$

B: Arrow Cards

43 + $24=67$

C: Hundred Square

$43+24=67$

41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70

D: Numicon

 $43+24=67$
$\begin{array}{cc}0000000000000000000000 \\ 00000000000000000 & 48 \\ 10 \quad 80 & 40\end{array}$

000000000000	
0000000000	20

0000000000000000000000000000000000167
 $102030 \quad 4050$

E: Place Value Counters

$43+24=67$

F: Money

$43+24=67$

G: Abacus

H: Number Line

D6a: Grouping Grid

Newchurch Community Primary

Mx2: Table Facts

$2 \times 1=2$
$2 \times 2=4$
$2 \times 3=6$
$2 \times 4=8$
$2 \times 5=10$
$2 \times 6=12$
$2 \times 7=14$
$2 \times 8=16$
$2 \times 9=18$
$2 \times 10=20$
$2 \times 11=22$
$2 \times 12=24$
$2 \times 7=14$
$2 \times 2=4$
$2 \times 12=24$
$2 \times 5=10$
$2 \times 9=18$
$2 \times 10=20$
$2 \times 1=2$
$2 \times 11=22$
$2 \times 4=8$
$2 \times 3=6$
$2 \times 8=16$
$2 \times 6=12$
2

Mx3: Table Facts

Mx4: Table Facts

Mx5: Table Facts

Mx6: Table Facts

$6 \times 1=6$
$6 \times 2=12$
$6 \times 3=18$
$6 \times 4=24$
$6 \times 5=30$
$6 \times 6=36$
$6 \times 7=42$
$6 \times 8=48$
$6 \times 9=54$
$6 \times 10=60$
$6 \times 11=66$
$6 \times 12=72$
$6 \times 6=36$
$6 \times 12=72$
$6 \times 9=54$
$6 \times 5=30$
$6 \times 2=12$
$6 \times 10=60$
$6 \times 4=24$
$6 \times 1=6$
$6 \times 11=66$
$6 \times 8=48$
$6 \times 3=18$
$6 \times 7=42$
2

Mx7: Table Facts

table

$7 \times 1=7$
$7 \times 2=14$
$7 \times 3=21$
$7 \times 4=28$
$7 \times 5=35$
$7 \times 6=42$
$7 \times 7=49$
$7 \times 8=56$
$7 \times 9=63$
$7 \times 10=70$
$7 \times 11=55$
$7 \times 12=60$
$7 \times 5=35$
$7 \times 3=21$
$7 \times 9=63$
$7 \times 11=55$
$7 \times 6=42$
$7 \times 10=70$
$7 \times 1=7$
$7 \times 12=60$
$7 \times 4=28$
$7 \times 8=56$
$7 \times 2=14$
$7 \times 7=49$

Usif

Mx8: Table Facts

10
$8 \times 1=8$
$8 \times 2=16$
$8 \times 3=24$
$8 \times 4=32$
$8 \times 5=40$
$8 \times 6=48$
$8 \times 7=56$
$8 \times 8=64$
$8 \times 9=72$
$8 \times 10=80$
$8 \times 11=88$
$8 \times 12=96$
$8 \times 1=8$
$8 \times 6=48$
$8 \times 11=88$
$8 \times 5=40$
$8 \times 2=16$
$8 \times 10=80$
$8 \times 4=32$
$8 \times 9=72$
$8 \times 12=96$
$8 \times 8=64$
$8 \times 3=24$
$8 \times 7=56$
8

Mx9: Table Facts

10
$9 \times 1=9$
$9 \times 2=18$
$9 \times 3=27$
$9 \times 4=36$
$9 \times 5=45$
$9 \times 6=54$
$9 \times 7=63$
$9 \times 8=72$
$9 \times 9=81$
$9 \times 10=90$
$9 \times 11=99$
$9 \times 12=108$
$9 \times 5=45$
$9 \times 11=99$
$9 \times 2=18$
$9 \times 4=36$
$9 \times 8=72$
$9 \times 3=27$
$9 \times 9=81$
$9 \times 6=54$
$9 \times 12=108$
$9 \times 1=9$
$9 \times 10=90$
$9 \times 7=63$
9

Mx10: Table Facts

10
$10 \times 1=10$
$10 \times 2=20$
$10 \times 3=30$
$10 \times 4=40$
$10 \times 5=50$
$10 \times 6=60$
$10 \times 7=70$
$10 \times 8=80$
$10 \times 9=90$
$10 \times 10=100$
$10 \times 11=110$
$10 \times 12=120$
$10 \times 9=90$
$10 \times 12=120$
$10 \times 4=40$
$10 \times 5=50$
$10 \times 7=70$
$10 \times 10=100$
$10 \times 1=10$
$10 \times 6=60$
$10 \times 2=20$
$10 \times 11=110$
$10 \times 8=80$
$10 \times 3=30$
20
6

Mxil: Table Facts

$11 \times 1=11$
$11 \times 2=22$
$11 \times 3=33$
$11 \times 4=44$
$11 \times 5=55$
$11 \times 6=66$
$11 \times 7=77$
$11 \times 8=88$
$11 \times 9=99$
$11 \times 10=110$
$11 \times 11=121$
$11 \times 12=132$
$11 \times 7=77$
$11 \times 2=22$
$11 \times 4=44$
$11 \times 11=121$
$11 \times 5=55$
$11 \times 12=132$
$11 \times 9=99$
$11 \times 1=11$
$11 \times 8=88$
$11 \times 6=66$
$11 \times 10=110$
$11 \times 3=33$
12

Mx12: Table Facts

$12 \times 1=12$
$12 \times 2=24$
$12 \times 3=36$
$12 \times 4=48$
$12 \times 5=60$
$12 \times 6=72$
$12 \times 7=84$
$12 \times 8=96$
$12 \times 9=108$
$12 \times 10=120$
$12 \times 11=132$
$12 \times 12=144$
$12 \times 6=72$
$12 \times 1=12$
$12 \times 9=108$
$12 \times 3=36$
$12 \times 8=96$
$12 \times 4=48$
$12 \times 7=84$
$12 \times 10=120$
$12 \times 2=24$
$12 \times 11=132$
$12 \times 5=60$
$12 \times 12=144$
2

38
-
${ }_{28}$
(4)

Ala: Lergest Number 1st
$5+3=8$

\square
\square
\square

11

\qquad 15

A2b: Counting
$1+48+1+15$ $\begin{array}{lllll}67 & 58 & 59 & 60 & 61 \\ 62 & 63\end{array}$ $57+6=63$

22

A4: Partitioning

$43+24=67$ $\begin{aligned} 40+20 & =60 \\ 3+4 & =7\end{aligned}$

A5: Partition
$43+24=67$
$60+7$

33

34

(AZ: Colunt Addition)
4
43
+24
67

A3a: Forwards Jump $57+25=82$ 8

$|$| 40 |
| :---: |
| $\mathbf{A 4 a :}$ Partitioning |
| $\mathbf{5 7}+25=82$ |
| $\mathbf{5 0 + 2 0}=\mathbf{7 0}$ |
| $7+5=\frac{12}{82}$ |

A5a: Partition Jot $\begin{aligned} & 57+25=82 \\ & 70+12 \end{aligned}$	(A6: Expanded Colunge) $\begin{array}{r} 5 \% \\ +\frac{55}{12} \\ \hline \frac{70}{82} \end{array}$	(AZ: Columin Addition) $\begin{array}{r} 57 \\ +25 \\ \hline 82 \\ \hline \end{array}$

		A3b: Forwards Jumap $86+48=134$	A4b: Partitioning $\begin{array}{r} 86+48=134 \\ 80+40=120 \\ 6+8=\frac{14}{134} \end{array}$	A5b: Partition Jot $\underset{120+14}{86+48}=134$		

56

A3c: Forwards Jump

58
$\left|\begin{array}{|c||}\text { A4c: Partitioning } \\ 687+248=935 \\ 600+200=800 \\ 80+40= \\ 7+8=\frac{15}{120} \\ \end{array}\right|$

62

83
74
75
A5d: Partition Jot
70

$\begin{array}{r} \text { A7d: Golutimn Add } \\ \text { n }{ }^{\top} \text { T } \\ 4873 \\ +\frac{3762}{\frac{8635}{11}} \end{array}$

71

65

87
88

A7f: Column Addition
4.8
$+\frac{3.8}{8.6}$

89
${ }^{-10}$

	MA1: Partitioning $\begin{aligned} & 45+82=127 \\ & 120+7+2 \end{aligned}$	MA2: Counting On $\begin{aligned} & 45+20=68 \\ & 45+20 \mid \end{aligned}$	MA3: Number Bonds $\begin{aligned} & 45+95=140 \\ & 40+100=140 \end{aligned}$	MA4: Double \& Adjust $\begin{gathered} 45+46=91 \\ 45+45+1 \\ 90+1=91 \end{gathered}$	MA5: Round andjust $\begin{gathered} 45+39=84 \\ 45+46-1 \\ 85-1=84 \end{gathered}$

$$
5
$$

MA1: Pertitioning

 $43+21=64$ $60+4$
\square

MA1: Partitioning $57+25=82$ $70+12=82$

$$
\begin{gathered}
45+9=54 \\
45+10-1= \\
55-1=54
\end{gathered}
$$

8

25
26
)

$$
70\}+12\}=82
$$

$|$| MA2a: Counting On |
| :---: |
| $85+50=135$ |
| $85+135$ |

MA2b: Counting On

$|$| MA5: Round in Adjust |
| :---: |
| $45+97=142$ |
| $45+100-3$ |
| $145-3=142$ |

	MA1: Partitioning $\left.\right\|_{800+70+2} ^{648+231}=879$	MA2a: Counting On $784+60=844$ (884) 844	MA2b: Counting On. $4837+\mathbf{3 0 0 0}=884$ $+3000$ 4837 7837	MA3: Number Bonds	MA4: Double \& Adjust $\begin{aligned} & 37+38=75 \\ & 37+37+1 \\ & 74+\quad 1=75 \end{aligned}$	MA5: Round in Adjust $\begin{aligned} & 345+298=643 \\ & 345+300-2 \\ & 645=2=643 \end{aligned}$ ©

	S1: Objects - $7-3=4$ \qquad

\square
?
Subtraction calculation

2

11
12

20
21

22

23	24
(S8: Triple Jumpl)	(S9: 108 Jump, is Jumpl)
87-23-64	87-23 = 64

28 (1)
29
30

38
39
40

				S8c: Big Jumpl	S9c: 100s, 10s, 18. Junip		

61
62

65

84
86

79

88
87 \qquad
70
68 \qquad 69

83
74

92
Y5

93
94
94
95
96
97
\square

89

	(M1: Eroups)	(M3: Arrays) 2 groups of ${ }^{2}$ countors" or ${ }^{\text {" }}$ groups of g Counters - ia counters altogether			

?
Ml: Repented Addition

5

14

29
30
31

34

$50+25=75$

35
M6: Expanded Colna
6: Expe

15
$\times \quad 5$
25
50
75

- 36

39
40
42
\square

44
MI6: Expanded Cohemu)
$\begin{array}{r}443 \\ \times \quad 6 \\ \hline 18 \\ 240 \\ \hline 258\end{array}$ $\frac{240}{258}$ 258
8

56
57
58
59
60

65

74
83
84
85
87
88
M8c: Decimal Erid
$3.6 \times 4=14.4$

\mathbf{x}	3	0.6
4	12	2.4
$12+2.4=14.4$		

89

- 90
92
93
94
95
96
97

141.

MM2: Re-ordering

$$
\begin{aligned}
& (9 \times 2) \times 5 \\
& 18 \times 5=90
\end{aligned}
$$

$$
\begin{aligned}
& 18 \times 5=90 \\
& \times(5) \times 2
\end{aligned}
$$

$$
\begin{gathered}
(9 \times 5) \times 2=90 \\
45 \times 2=90
\end{gathered}
$$

$(2 \times 5) \times$ -
$10 \times 8=80 *$

MM3: Partitioning

$15 \times 5=75$
$\underset{(60 \times 0)}{50}+\underset{6 \times 5}{25}=75$

$\|c\|$	MM4: Round \& Adjust
$49 \times 3=147$	
$(50 \times 3)-(1 \times 3)$	
$150-3=147$	$20+14=34$

\square
\square

MM3a: Partitioning$\begin{aligned} & 37 \times 4=148 \\ & \{120\}+\underset{\sigma \times 4)}{28}=148 \end{aligned}$	

MM2a: Re-ordering
$(7 \times 4) \times 5$
$28 \times 5=$
$7 \times 5) \times 4$
35
$\times 4$
4
$4 \times 5 \times 7$
$\left.\begin{array}{r}4 \\ 20 \\ 20\end{array}\right) \times 7$
,

20
20

29
30

$$
\begin{array}{||c|}
\mid M M 4 \mathrm{~b}: \text { Round \& Adjust } \\
3.9 \times 5=19.5 \\
(4 \times 5)-(0.1 \times 5) \\
20-0.5=19.5
\end{array}
$$

23

$$
\begin{array}{||c|}
|c| \\
\text { MM4c: Round \& Adjust } \\
\epsilon 5.99 \times 6=£ 35.94 \\
(\epsilon 6 \times 6)-(1 p \times 6) \\
\epsilon 36-6 p=£ 35.94
\end{array}
$$

21
 8

MM5b: Doubling

 Double 78 = 156 1 $140+16-156$$\qquad$ 16

25

\qquad

MM5d: Doubling

 Double 480 - 960 $800+160=960$

38
39
40

| MM5e: Doubling |
| :--- | :--- |
| Double $278=556$ |
| $400+140+16-556$ |

43

					MM5f: Doubling Double 768 - 1536 $1400+120+15=1506$

56

57
 58 59

MM5g: Doubling Double 3.7 = 7.4 1 $6+1.4=7.4$

69

\qquad

76

MM8: Malt byamthen Halve	MM9: Doubling a Holving
$86 \times 5=430$	45×14
$\begin{aligned} & 86 \times 10=860 \\ & 860+2=480 \end{aligned}$	$80 \times 7=630$

83
84

MM7a: Doubling Up

MM8a: Whlt byam then Hake ||MM9a: Doubling a Halving
$56 \times 25=1400$
50×100 $56 \times 100=5600$ $2800+2=1400$ $2000+2=1400$ Deuble $1000=2000 \begin{gathered}\text { cass } \times \infty\end{gathered}$ 92

93
94
95

MM9b: Doubling 4 Halving
26×32
52×16
$104 \times 8=832$
208×4 ete.

69

MM1O: Factorising
$32 \times 15=480$ (32 x 5 x 3)
$160 \times 3=480$

79

80
MM1Oa: Factorising
$52 \times 24=1248$
($52 \times 4 \times$ © $)$
$208 \times 6=1248$
88
(1)

$+{ }^{81}$
\qquad
96

D3: Division as Sharing

\square

Y3

11

20

14

24

34

D8: Find the Flunk!

35

$\sum 18$

(1)

38

\qquad

D8a: Find the Hundd

42

44

45
8^{36}

New Church Community Primary

				D9: Moga Hunk! $136+4=34$ 	D10: $\begin{aligned} & \text { : Short Division } \\ & 136+4=34 \\ & 34 \\ & 4 \longdiv { 1 3 ^ { 1 } 6 } \end{aligned}$	$\begin{array}{\|l} \text { D11: Chunking } \\ \frac{34}{4116} \\ \frac{-120}{16}(4 \times 30) \\ \frac{-16}{0}(4 \times 2) \end{array}$	

92
93
94

\square

30
C4a: Arranging C4b: Arranging ainus -०००० ०००००

\square

5 6

 8

25
26

32
33
C5: Counting Forwath
C6: Counting On

1

Sense of Number Standard Alternative Slides

 by Dave Godfrey

 by Dave Godfrey
 dave@senseofnumber.co.uk Tel: 01904778848

The following slides the standard oltternetive slide contigurations to the malin set of slides.

(A7: Column Addition)

8

3

M HTh TTh Th H T U

With Money

5
New Church Community Primary

s3a: Counting Back

"What do I get if I take 8 away from 12? Answer: ©"

s5a: Backwards Boing

5
New Church Community Primary

s6a: Backwalids Bounce

s

s

(M7: Column Multiplication)

(M7: Column Multiplication)

M9c: Column Multiplication

ample Edition

M9d: Column Multplication

				S8c: Big Jumpl	S9c: 1008, 108, 18 Jumip		SII: Columan Subtruetion $=\frac{356}{367}$

56

57

58

S8d Quad Jmap Fratrome $+24+200+5000$ +42$\text { \|\|5042 - } 1776 \text { = sest }$	

S9d: 10000, 1000, 100, 110. Jaup$5042-1776=\text { 32eq }$

61

Slle: Columen Subtoret
 $31 F=-7$

86

Y5

93
94
95
92
9 \square
\square
\square

2

