Sense of Number Visual Calculations Policy

Full Training Edition for Newchurch Community Primary School July 2014

by Dave Godfrey Anthony Doddy

by Dave Godfrey, Anthony Reddy & Laurence Hicks

For sole use within Newchurch Community Primary School.

'A picture is worth 1000 words!' www.senseofnumber.co.uk

Cuide to using a Visual Calculations Policy

The Sense of Number Visual Calculations Policy provides a visual representation of a school's counting policy and its written and mental calculation policy.

A bespoke VCP is created by Dave Godfrey when a school chooses the slides, including any alterations/additions, they require. The school logo and school name are added, and the sample edition watermarks are removed.

Typical uses:

Classroom: The slides are printed out (e.g. A4) and the appropriate slides are displayed within each classroom for continual reference or on a working wall. Teacher Reference: The slides are printed out (e.g. 9 slides per A4 page) and inserted in the teacher's planning folder.

Parents: The slides are used to communicate to parents the methods being taught and used within school.

Website: Slides from the VCP are inserted on a school's maths webpages.

(Please note: the VCP should not be made available for download)

KC1: Key Concepts! Addition

"What is 8 add 2?" Answer: 10

"What is 8 subtract 2?" Answer: 6 "The difference between 8 and **2** is **6**"

KC2: Key Concepts!

Multiplication

 $8 \times 2 = 16$

"8, 2 times" or "2 groups of 8"

"8 divided by 2" means "How many groups of 2 are there in 8?" Answer: 4

("8 shared into 2 sets is 4")

Calculation Vocabulary

equivalent to

equals

is the same as

balance

4 Addition

Multiplication

Operations

- Subtraction

Addition Vocabulary

Subtraction Vocabulary

count back

decrease

minus

less

subtract

fewer

count on

take away

difference between

Multiplication Vocabulary

eated addit

Division Vocabulary

factor

Addition Calculation

Subtraction Calculation

(subtract) (equals) difference subtrahend

Multiplication Calculation

Division Calculation

Cla: Number Order

0 1 2 3 4 5

The Numbers must be said once and always in the conventional order.

C1b: At a Glance

Subitising

See at a glance how many are in small collections and attach correct number names to such collections.

C2a: Number Match One to One Correspondence

Each object to be counted must be touched or Included exactly once as the numbers are said.

C2b: Counting Objects

Starting Point and Order Irrelevance

The objects can be touched in any order. The starting point and order in which the objects are counted does not affect how many there are

C2c: Order Arrangement

Arrangement Irrelevance

The arrangement of the objects does not affect how many there are.

C3: How Many?

Find number is the total

The last number said tells 'how many' in the whole collection. It does not describe the last object touched.

C4: Arranging

Sets of 5

C4a: Arranging

Sets of 5

C4b: Arranging

Sets of 5 (Non Linear)

C4c: Arranging

Sets of 5 (Non Linear)

C5: Counting Forwards

C6: Counting On

C7: Counting Back

C8: Counting in Steps

A1: Objects & Pictures

"If I have 3 and then 5 more, how many altogether? Answer: 8"

Ala: Largest Number 1st

A2: Counting On 5 + 3 =

A2a: Counting On Bridging 10

8 + 5 = 13

A2b: Counting On Bridging 10s Number

57 + 6 =

A3: Forwards Jump 43 + 24 = 67

A3a: Forwards Jump

57 + 25 = 82

A3b: Forwards Jump

86 + 48 = 134

A3c: Forwards Jump

687 + 248 = 935

A3f: Decimal Jump

4.8 + 3.8 = 8.6

A3g: Decimal Jump

5.65 + 3.29 = 8.94

A4: Partitioning

43 + 24 = 67

40 + 20 = 60

A4a: Partitioning

57 + 25 = 82

50 + 20 = 70 7 + 5 = 12

A4b: Partitioning

$$86 + 48 = 134$$

$$80 + 40 = 120$$

$$6 + 8 = 14$$

$$134$$

A4c: Partitioning

$$687 + 248 = 935$$

A4f: Partitioning

4.8 + 3.8 = 8.6

0.8 + 0.8 = 1.0

A5: Partition Jot

A5a: Partition Jot

A5b: Partition Jot

A5c: Partition Jot

A5d: Partition Jot

A5f: Partition Jot

A5g: Partition Jot

A5h: Partition Jot

A5i: Partition Jot

$$£38.25 + £27.46 = £65.71$$

£65.00 + £0.71

(A6: Expanded Column) **Additional**

(A6: Expanded Column) Additional:a

Additional:b

(A6: Expanded Column

A6: Expanded Column

(A7: Column Addition) Additional

(A7: Column Addition) Additional:a

1 2 5

(A7: Column Addition) Additional:b

A7: Column Addition 587 1 248

A7d: Column Addition

AZe: Column Addition HTh TTh Th H 87557

A7f: Column Addition

A7g: Column Addition

A7h: Column Addition

76 135.2

A7i: Column Addition With Money

E38.25 + E27.46 £65.71

A7j: Column Addition With Decimals

73.4 + 5.67 = 79.07

MA1: Partitioning

MA2: Counting On

45 + 20 =

MA2a: Counting On Year 1

MA2b: Counting On Year 1

57 + 10 =

MA2a: Counting On Year 2

MA2b: Counting On Year 2

58 + 40 =

MA2a: Counting On Year 3

85 + 50 = 135

MA2b: Counting On Hundreds

534 + 300 = 834

MA2a: Counting On Year 4

784 + 60 = 844

MA2b: Counting On Hundreds

4837 + 3000 = 834

MA2a: Counting On Hundreds

837 + 500 = 1337

MA2b: Counting On Thousands

7583 + 5000 = 12583

MA2a: Counting On Year 6 Ten Thousands

43,826 + 30,000 = 73,826

MA2b: Counting On Year 6

5,763,947 + 4,000,000 +4,000,000

MA3: Number Bonds

MA3: Number Bonds Year 1 Learn Bonds

0 + 10 = 103 + 7 0 + 0 =

MA3: Number Bonds Year 2

MA3: Number Bonds Year 3

MA3: Number Bonds

$$42 + 16 + 28 + 54 = 140$$

MA3: Number Bonds

£4.56 + £3.27 + £1.44 = £9.27

MA3: Number Bonds Year 6

$$24.25 + 31.63 + 21.75 = 77.63$$

MA4: Double & Adjust Year 1

$$7 + 8 = 15$$
 $7 + 7 + 1$
 $14 + 1 = 15$

$$37 + 38 = 75$$
 $37 + 37 + 1$
 $74 + 1 = 75$

$$125 + 127 = 252$$

$$125 + 125 + 2$$

250 +

2 = 252

MA4: Double & Adjust Year 6

0.2 = 9.2

MA5: Round & Adjust

$$45 + 39 = 84$$
 $45 + 40 - 1$
 $85 - 1 = 84$

MA5: Round & Adjust Year 1

MA5: Round & Adjust Year 2

$$45 + 19 = 64$$
 $45 + 20 - 1$
 $65 - 1 = 64$

MA5: Round & Adjust

$$45 + 97 = 142$$
 $45 + 100 - 3$
 $145 - 3 = 142$

MA5: Round & Adjust Year 4

$$345 + 298 = 643$$
 $345 + 300 - 2$
 $645 - 2 = 643$

MA5: Round & Adjust

MA5: Round & Adjust Year 6

S1: Objects

"What do I get if I take 3 away from 7? Answer: 4"

52: What's the Difference?

"How many more is 7 than 5? What is the difference?"

53: Counting Back

"What do I get if I take 3 away from 12? Answer: 9"

54: Counting On

12 - 9 = 3

"How many more is 12 than 9? What is the difference?"

S4a: Counting On

83 - 78 = 5

"How many more is 83 than 78? What is the difference?"

S5: Backwards Boing

56: Backwards Bounce

57: Backwards Jump

(S8: Triple Jump!) Additional

58: Triple Jump!

58b: Quad Jump!

132 - 56 = 76

S8c: Big Jump!

723 - 356 = 367

58d: Quad Jump Extreme

5042 - 1776 = 3266

S8f: Decimal T-J!

13.4 - 8.7 = 4.7

(S9:10s Jump, 1s Jump!) Additional

59: 10s Jump, 1s Jump!

75 - 37 = 38

S9b: 10s Jump, 1s Jump!

132 - 56 = 76

59c: 100s, 10s, 1s Jump

723 - 356 = 36

59d: 1000s, 100s, 10s, 1s Jump

5042 - 1776 = 3266

S9f: 1s Jump, Tenths Jump!

13.4 - 8.7 = 4.7

(\$10: Expanded Column) Additional Subtraction

87 - 23 = 6

(\$10: Expanded Column) Additional:a Subtraction

75 - 37 = 38

(\$10: Expanded Column) Additional:b

132 - 56 = 38

S10: Expanded Column

Subtraction (HTU-HTU)

723 -	356 =	367
H	T	U
600	110	1
700	20	3
300	50	6
300	60	

(S11: Column Subtraction) Additional

(S11: Column Subtraction) Additional:a

(S11: Column Subtraction) Additional:b

511: Column Subtraction

356

S11d: Column Subtraction

S11e: Column Subtraction HTh TTh Th H

S11e: Column Subtraction

S11g: Column Subtraction

S11h: Column Subtraction With Decimals

12.4 - 5.97 = 6.43

MS1: Counting Back

46 - 21 = 25

MS2: Counting On

75 - 47 = 28

MS2a: Counting On

75 - 47 = 28

MS3: Round & Adjust

$$84 - 29 = 55$$
 $84 - 30 + 1$
 $54 + 1 = 55$

(M1: Groups)

"2 groups of 5 counters makes 10 counters altogether"

M1: Repeated Addition (Groups)

$$5 \times 3 = 5 + 5 + 5 = 15$$

"5 multiplied by 3" means "5, 3 times", which gives "3 lots of 5"!

M2: Repeated Addition (Number Line)

$$5 \times 3 = 5 + 5 + 5 = 15$$

"5 times 3" means "5, 3 times!"

(M3: Arrays)

"2 groups of 5 counters" or "5 groups of 2 counters" - "10 counters altogether"

M3: Arrays

 $3 \times 5 = 15$ or $5 \times 3 = 15$

M4: Multi Boing!

$$10 \times 5 = 50 \\ 5 \times 5 = 25$$

 $15 \times 5 = 75$

M4a: Partitioning $15 \times 5 = 75$ $10 \times 5 = 50$ $5 \times 5 = 25$

50 + 25 = 75

M5: Grid Method Short Multiplication

 $15 \times 5 = 75$

50 + 25 = 75

M5a: Grid Method **Short Multiplication**

 $43 \times 6 = 258$

240 + 18 = 258

M5b: Grid Method Short Multiplication

 $147 \times 4 = 5$

100 | 40 400 160 28

400 + 160 + 28 =

Additional

M6: Expanded Column

 $25 (5 \times 5)$ (5×10)

Additional a

M6: Expanded Column

 $18 (6 \times 3)$ 240 (6 x 40)

M6: Expanded Column

147 (4×7) **60** (4×40) (4×100)

(M7: Column Multiplication) Additional

(M7: Column Multiplication) Additional:a

M7: Column Multiplication

M8: Grid Method Long Multiplication

 $43 \times 65 = 2795$

X	40	3
60	2400	180
5	200	15

2400 + 180 + 200 + 15 = **2795**

M8a: Grid Method Long Multiplication

 $243 \times 68 = 16,524$

X	200	40	3	
60	12000	2400	180	= 14,580
8	1600	320	24	= 1,944

14580 + 1944 = 16,524

M8b: Grid Method Long Multiplication

 $203 \times 68 = 13$

X	200	0	3
60	12000	0	180
8	1600	0	24

= 12,180 = 1,624

12180 + 1624 = 13

M8c: Decimal Grid Short Multiplication

 $3.6 \times 4 = 14.4$

12 + 2.4 = 14.4

M8d: Decimal Grid Short Multiplication

 $47.2 \times 3 = 141.6$

 X
 40
 7
 0.2

 3
 120
 21
 0.6

120 + 21 + 0.6 = 141.6

M8e: Grid Method Short Multiplication

 $7.38 \times 6 = 44.28$

X	7	0.3	0.08
6	42	1.8	0.48

42 + 1.8 + 0.48 = 44.28

M8f: Grid Method Long Multiplication 24.3 x 2.5 = 60.75

 X
 20
 4
 0.3

 2
 40
 8
 0.6
 = 4

 0.5
 10
 2
 0.15
 = 15

= 48.6

= 12.15

48.6 + 12.15 = 60.75

M9: Long Multiplication

 (5×43) (60×43)

M9a: Long Multiplication Column

 (8×243) (60×243)

M9b: Long Multiplication

 (8×203) (60×203)

M9c. Column Multiplication

M9d Column Multiplication

M9e: Column Multiplication

M9f: Long Multiplication Column Decimals

T U 10 100 $12.15 (0.5 \times 24.3)$ $48.60 (2 \times 24.3)$

M95 Long Multiplication

3786 (8×3786) (40×3786)

MM1: Jump!

x100

x10

+10 +100 3-4

0.34

MM1a: Jump!

x1000 x100 x100

+10 +100 +1000

Newchurch Community Primary

53400 6340 6340 634

> 5.4 6.34 0.634 0.63

MM2: Re-ordering

$$(9 \times 2) \times 5$$

$$18 \times 5 = 90$$

$$(9 \times 5) \times 2$$

$$45 \times 2 = 90$$

$$(2 \times 5) \times 9$$

$$10 \times 9 = 90$$

MM2a: Re-ordering

$$(7 \times 4) \times 5$$
 $28 \times 5 = 140$
 $(7 \times 5) \times 4$
 $35 \times 4 = 140$
 $(4 \times 5) \times 7$
 $20 \times 7 = 140 **$

MM2b: Re-ordering

MM3: Partitioning

 $15 \times 5 = 75$

MM3a: Partitioning

 $37 \times 4 = 148$

$$(30 \times 4) + (28) = 148$$

$$(30 \times 4) (7 \times 4)$$

MM4: Round & Adjust

 $49 \times 3 = 147$

 $(50 \times 3) - (1 \times 3)$

150 - 3 = 147

MM4a: Round & Adjust

 $198 \times 4 = 792$

 $(200 \times 4) - (2 \times 4)$

800 - 8 = 792

MM4b: Round & Adjust

 $3.9 \times 5 = 19.5$

 $(4 \times 5) - (0.1 \times 5)$

20 - 0.5 = 19.5

MM4c: Round & Adjust

 $£5.99 \times 6 = £35.94$

$$(E6 \times 6) - (1p \times 6)$$

£36 - 6D = £35.94

MM5: Doubling

Double 17 = 34

MM5a: Doubling

Double 37 = 74

MM5b: Doubling

Double 78 = 156

MM5c: Doubling

Double 340 = 680

MM5d: Doubling

Double 480 = 960

MM5e: Doubling

Double 278 = 556

MM5f: Doubling

Double 768 = 1536

MM5g: Doubling

Double 3.7 = 7.4

MM6: Doubling Table Facts

$$\begin{array}{c} 16 \times 7 = 112 \\ (8 \times 2) \end{array}$$

8
$$x 7 = 56$$

 $\downarrow x 2$
16 $x 7 = 112$

MM7: Doubling Up

 $36 \times 8 = 112$

Double 36 = 72 (36 x 2) Double 72 = 144 (36 x 4) Double 144 = 288 (36 x 8)

MM7a: Doubling Up

 $125 \times 16 = 2000$

Double 125 = 250

 (125×2)

Double 250 = 500

 (125×4)

Double 500 = 1000

 (125×8)

Double $1000 = 2000 (125 \times 16)$

MM8: Mult by 1000 then Halve

 $86 \times 5 = 430$

 $86 \times 10 = 860$ $860 \div 2 = 430$

MV18a: Mult by then Halve

 $56 \times 25 = 1400$

 $56 \times 100 = 5600$ $5600 \div 2 = 2800$ $2800 \div 2 = 1400$

MM9: Doubling & Halving

 45×14 $90 \times 7 = 630$

MM9a: Doubling & Halving

36 x 25
18 x 50 9 x 100 = 900

MM9b: Doubling & Halving

26 x 32 52 x 16 $104 \times 8 = 832$

208 x 4 etc.

MM10: Factorising

$$32 \times 15 = 480$$

$$(32 \times 5 \times 3)$$

 $160 \times 3 = 48$

MM10a: Factorising

$$52 \times 24 = 1248$$

$$(52 \times 4 \times 6)$$

$$208 \times 6 = 1248$$

D1: Sharing (Concept)

"If I share 5 into 2 equal amounts, how many in each group?" Answer: 3

D2: Grouping (Concept)

"How many groups of 2 can I make out of 6?
Answer: 3

D3: Division as Sharing

 $12 \div 2 = 6$

"If I share 12 into 2 equal amounts, how many in each group?" Answer: 6

D4: Division as Grouping

12 + 2 = 6

"How many groups of 2 can I fit in 12?"
Answer: 6

D5: Grouping on a Number Line

20 + 5 = 4

"How many 5s in 20?"
Answer: 4

D5a: Grouping on a Number Line Remainders

"How many 5s in 17?" Answer: 3 remainder 2

D6: Grouping Grid

"How many times can I fit (groups of) 4 into 27?"
Answer: 613

27 + 4 = 6r3

D7: Chunking Jump

72 + 4 = 18

"How many 4s in 72?"
Answer: 18

D7a: Chunking Jump Remainders

"How many 4s in 65?"
Answer: 1611

D8: Find the Hunk!

D8a: Find the Hunk! Remainders

65 ÷ 4 = 16r1

D9: Mega Hunk!

136 + 4 = 34

D9c: Mega Hunk!

Remainders

 $394 \div 6 = 65r4$

D9d: Mega Hunk!

591 ÷ 3 = 197

D9e: Mega Hunk!

5978 ÷ 7 = 854

D9f: Mega Hunk!

 $846 \div 5 = 169$ n

D9: Mega Hunk! Simple Long Division

 $480 \div 15 = 32$

Mega Hunk! 450 + 30 | + 15 | 30 + 2 = 32

D9h: Decimal Hunk!

$$18 \div 1.5 = 12$$

D9: Decimal Hunk!

 $87.5 \div 7 = 12.5$

(D10: Short Division) Additional

72 + 4 = 18

(D10: Short Division)
Additional:a

 $65 \div 4 = 16r1$

16r1 455

D10: Short Division

 $136 \div 4 = 34$

D10c: Short Division

 $394 \div 6 = 65r4$

55r4 5334 534

D10d: Short Division

 $591 \div 3 = 197$

197 359²1

D10e: Short Division

 $5978 \div 7 = 854$

854 759³7⁸

D10f: Short Division

Difficient Remainders

5 8³4⁴6.0

 $846 \div 5$

5 8³4⁴6

5)8³4⁴6

D10i: Short Division

 $87.5 \div 7 = 12.5$

12.5 7 87.5

(D11: Chunking) Additional

 $-40(4 \times 10)$ -32(4x8)

(D11: Chunking) Additional:a

4)65 - 40 (4 x 10) - 24 (4 x 6)

D11: Chunking

 $136 \div 4 = 34$

D11b: Chunking

$$136 + 4 = 34$$

D11c: Chunking

Remainders

394 + 6 = 6514

D11d: Chunking

Mega Chunk

3 | 591

- 300 (3 x 100)

- 270 (3 x 90)

- 21 (3 x 7)

 $591 \div 3 = 197$

D11e: Chunking

Mega Chunk

```
7 5978
 -5600 (7 \times 800)
   -270 (7 \times 50)
    -28 (7 \times 4)
```

 $5978 \div 7 = 854$

D11f: Chunking

Mega Chunk

169r1 5 846

- 500 (5 x 100)

346

- 300 (5 x 60)

46

- 45 (5 x 9)

1

846 + 5 = 169r1

D11g1: Chunking

Long Division

15)480 450 (15 x 30) $30 (15 \times 2)$

0

480 + 15 = 32

D11g2: Chunking Division

15 480

- 150 (15 x 10)

330

- 150 (15 x 10)

180

- 150 (15 x 10)

30

 $-30 (15 \times 2)$

480 + 15 = 32

D12: Chunking 26r21

Long Division
With Remainders

37 983

- 370 (37 x 10)

613

 $-370(37 \times 10)$

243

- 222 (37 x 6)

21

983 + 37 = 26r21

D13: Long Division 26 r21 37 983

 $983 + 37 = 26_{121}$

Sense of Number Calculation Cards

dave@senseofnumber.co.uk Tel: 01904 778848

The following slides show the calculation 43 + 24 using a variety of resources and manipulatives.

A: Base 10

B: Arrow Cards

C: Hundred Square

43 + 24 = 67

41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70

D: Numicon

E: Place Value Counters

43 + 24 = 67

10 s	15
10 10	
10 10	
10 10	
60	

43 + 24 =

G: Abacus

$$43 + 24 = 67$$

H: Number Line

43 + 24 = 67

D6a: Grouping Grid

"How many times can I fit (groups of) 4 into 27?"
Answer: 613

27 ÷ 4 = 613

Mx2: Table Facts

Zx table

 $2 \times 2 = 4$

 $2 \times 3 = 6$

 $2 \times 4 = 8$

 $2 \times 5 = 10$

 $2 \times 6 = 12$

 $2 \times 7 = 14$

 $2 \times 8 = 16$

 $2 \times 9 = 18$

 $2 \times 10 = 20$

 $2 \times 11 = 22$

 $2 \times 12 = 24$

 $2 \times 7 = 14$ $2 \times 2 = 4$

 $2 \times 12 = 24$

 $2 \times 5 = 10$

 $2 \times 9 = 18$

 $2 \times 10 = 20$

 $2 \times 1 = 2$

 $2 \times 11 = 22$

 $2 \times 4 = 8$

 $2 \times 3 = 6$

 $2 \times 8 = 16$

 $2 \times 6 = 12$

Mx3: Table Facts

3x table

 $3 \times 1 = 3$ $3 \times 2 = 6$

 $3 \times 3 = 9$ $3 \times 4 = 12$

 $3 \times 5 = 15$

 $3 \times 6 = 18$

 $3 \times 7 = 21$

 $3 \times 8 = 24$

 $3 \times 9 = 27$

 $3 \times 10 = 30$

 $3 \times 11 = 33$

 $3 \times 12 = 36$

 $3 \times 5 = 15$

 $3 \times 12 = 36$

 $3 \times 2 = 6$

 $3 \times 4 = 12$

 $3 \times 8 = 24$

 $3 \times 3 = 9$

 $3 \times 7 = 21$

 $3 \times 9 = 27$

 $3 \times 11 = 33$

 $3 \times 6 = 18$

 $3 \times 10 = 30$

 $3 \times 1 = 3$

Mx4: Table Facts

4x table


```
4 \times 3 = 12
4 \times 4 = 16
4 \times 5 = 20
4 \times 6 = 24
4 \times 7 = 28
4 \times 8 = 32
4 \times 9 = 36
4 \times 10 = 40
4 \times 11 = 44
4 \times 12 = 48
4 \times 9 = 36
4 \times 2 = 8
4 \times 4 = 16
4 \times 8 = 32
```

```
4 \times 3 = 12
4 \times 7 = 28
```

 $4 \times 11 = 44$

 $4 \times 12 = 48$

 $4 \times 5 = 20$

 $4 \times 10 = 40$

 $4 \times 6 = 24$

Mx5: Table Facts

bx table

 $5 \times 2 = 10$

 $5 \times 3 = 15$ $5 \times 4 = 20$

 $5 \times 5 = 25$

 $5 \times 6 = 30$

 $5 \times 7 = 35$

 $5 \times 8 = 40$

 $5 \times 9 = 45$

 $5 \times 10 = 50$

5 x 11 = **55**

 $5 \times 12 = 60$

 $5 \times 5 = 25$ $5 \times 11 = 55$

 $5 \times 3 = 15$

 $5 \times 6 = 30$

 $5 \times 7 = 35$

 $5 \times 10 = 50$

 $5 \times 2 = 10$

 $5 \times 12 = 60$

 $5 \times 4 = 20$

 $5 \times 1 = 5$

 $5 \times 8 = 40$

 $5 \times 9 = 45$

Mx6: Table Facts

bx table

 $6 \times 1 = 6$

 $6 \times 2 = 12$

 $6 \times 3 = 18$ $6 \times 4 = 24$

 $6 \times 5 = 30$

 $6 \times 6 = 36$

 $6 \times 7 = 42$

 $6 \times 8 = 48$

 $6 \times 9 = 54$

 $6 \times 10 = 60$

6 x 11 = **66**

 $6 \times 12 = 72$

 $6 \times 6 = 36$ $6 \times 12 = 72$

 $6 \times 9 = 54$

 $6 \times 5 = 30$ $6 \times 2 = 12$

 $6 \times 10 = 60$

 $6 \times 4 = 24$

 $6 \times 1 = 6$ $6 \times 11 = 66$

 $6 \times 8 = 48$

 $6 \times 3 = 18$

Mx7: Table Facts

Table

 $7 \times 2 = 14$

 $7 \times 3 = 21$ $7 \times 4 = 28$

 $7 \times 5 = 35$

 $7 \times 6 = 42$

 $7 \times 7 = 49$

 $7 \times 8 = 56$

 $7 \times 9 = 63$

 $7 \times 10 = 70$

 $7 \times 11 = 55$

 $7 \times 12 = 60$

 $7 \times 5 = 35$

 $7 \times 3 = 21$

 $7 \times 9 = 63$

 $7 \times 11 = 55$

 $7 \times 6 = 42$

 $7 \times 10 = 70$

 $7 \times 1 = 7$

 $7 \times 12 = 60$

 $7 \times 4 = 28$

 $7 \times 8 = 56$

 $7 \times 2 = 14$

Mx8: Table Facts

ox table

 $8 \times 1 = 8$

 $8 \times 2 = 16$ $8 \times 3 = 24$

 $8 \times 4 = 32$

 $8 \times 5 = 40$

 $8 \times 6 = 48$

 $8 \times 7 = 56$

 $8 \times 8 = 64$

 $8 \times 9 = 72$

 $8 \times 10 = 80$

8 x 11 = 88

 $8 \times 12 = 96$

 $8 \times 1 = 8$

 $8 \times 6 = 48$

 $8 \times 11 = 88$

 $8 \times 5 = 40$

 $8 \times 2 = 16$

 $8 \times 10 = 80$

 $8 \times 4 = 32$

 $8 \times 9 = 72$

 $8 \times 12 = 96$

 $8 \times 8 = 64$

 $8 \times 3 = 24$

Mx9: Table Facts

9xtable

 $9 \times 2 = 18$

 $9 \times 3 = 27$

 $9 \times 4 = 36$

 $9 \times 5 = 45$

 $9 \times 6 = 54$

 $9 \times 7 = 63$

 $9 \times 8 = 72$

 $9 \times 9 = 81$

 $9 \times 10 = 90$

9 x 11 = **99**

9 x 12 = **108**

 $9 \times 5 = 45$

 $9 \times 11 = 99$

 $9 \times 2 = 18$

 $9 \times 4 = 36$

 $9 \times 8 = 72$

 $9 \times 3 = 27$

 $9 \times 9 = 81$

 $9 \times 6 = 54$

 $9 \times 12 = 108$

 $9 \times 1 = 9$

 $9 \times 10 = 90$

Mx10: Table Facts

10x table

Mx11: Table Facts

Ix table

Mx12: Table Facts

12x table

Sense of Number Standard Alternative Slides

by Dave Godfrey

dave@senseofnumber.co.uk Tel: 01904 778848

The following slides the standard alternative slide configurations to the main set of slides.

New Church Community Primary

New Church Community Primary School Visual Calculations Policy © Sense of Number 2014 For sole use by purchasing school. Bespoke Graphic Design by Dave Godfrey - www.senseofnumber.co.uk

(A7: Column Addition) Additional:a

(A7: Column Addition) Additional:b

A7: Column Addition

A7d: Column Addition

A7e: Column Addition HTh TTh Th

A7f: Column Addition

A7g: Column Addition

A7h: Column Addition

A7i: Column Addition

A7j: Column Addition

With Decimals 73.4 + 5.67 = 79.

"What do I get if I take 3 away from 12? Answer: 9"

55a: Backwards Bo

56a: Backwards Bounce

57a: Backwards Jump

(M7: Column Multiplication) Additional

(M7: Column Multiplication) Additional:a

M7: Column Multiplication

M9: Long Multiplication

M9a: Long Multiplication Column

 (8×243) (60 x 243)

M9b: Long Multiplication

M9c: Column Multiplication

M9d Column Multiplication

M9e: Column Multiplication

M9f: Long Multiplication Column Decimals

 (0.5×24.3) 48.60 (2 x 24.3)

M95 Long Multiplication

(8 x 3786) (40 x 3786)

A COLOR

