Newchurch Community Primary

Policy - Mathematics and Written Calculation

Mission Statement

Newchurch will give every child a flying start by working in partnership with parents, staff and the community to develop well-rounded citizens who will contribute in a positive way to society.

Persons with Responsibility

John Duckett
Jayne Narraway
School Governors

Linked Policies

Visual Calculation Policy
Visual Fractions Policy
Marking and Feedback Policy

Next Review: Sep 2021

Contents:

Introduction
How mathematics is taught at Newchurch
Base models for addition and subtraction
Stages of addition
Addition guidance
Stages of subtraction
Subtraction guidance
Addition and subtraction glossary of terms
Base models for multiplication and division
Applying times tables
Stages of Multiplication
Multiplication guidance
Stages of Division
Division guidance
Multiplication and division glossary of terms
Visual Calculation Policy and Visual Fractions Policy

Introduction

The Mathematics framework provides a structured and systematic approach to teaching number and the stages of calculation. There is initial emphasis on teaching mental calculation strategies along with speaking and listening activities. Informal written recording will take place regularly and is an important part of learning and understanding. More formal written methods will follow only when the child is able to use a wide range of mental calculation strategies. This will help communicate methods and solutions.

Why do we need this policy?

- Consistency in methods taught throughout the school.
- Progression from informal / practical methods of recording to written methods for each of the four operations.
- An aid to parent's understanding in their child's stages of learning.

Reasons for using written methods

- To aid mental calculation by writing down some of the numbers and answers involved
- To make clear a mental procedure for the pupil
- To help communicate methods and solutions
- To provide a record of work to be done
- To aid calculation when the problem is too difficult to be done mentally
- To develop and refine a set of rules for calculation

How mathematics is taught at Newchurch

The aim of the mathematics approach is to develop the children's mental calculation confidence before moving onto the written methods of formal mathematics. The lessons will be differentiated to meet the needs of the children, however they will work within the expectations of the National Curriculum. Newchurch Primary School work in accordance with guidance and materials outlined by White Rose Hub (https://whiterosemaths.com/) which offers a systematic approach to the full curriculum in each year group. Mathematics is taught along three progressive core principles:

The children will meet mathematics in three main formats:

1. Fluency -
2. Reasoning -
3. Problem solving -

This is be the children's ability to perform the base standard of the target e.g. perform a written calculation method. The children will apply their knowledge of number and methods to more contextual problems including word problems. The children will investigate more expansive challenges which employ their mathematics knowledge. This can include openended tasks and those linked to other areas of the curriculum e.g. mathematics within science.

Marking and Feedback will support the children in progressing between these three stages. They will be supported in their learning through the use of concrete manipulatives (objects), visual support (images) and finally abstract methodology. Assessment will follow the whole school feedback policy which identifies next steps and addressing misconception.

Pre-learning:

Children will be assessed at the start of units of work on their fluency and reasoning. The children will be given questions in these areas of the curriculum, the result of these questions will be used to group children for upcoming tasks.

Whole school approach:

We have developed a consistent approach to the teaching of written calculation methods. This will establish continuity and progression throughout the school. A variety of mental methods will be established in Key Stage 1 and built on as the children progress into Key Stage 2. These are shown below and will be based on a solid understanding of place value in number. These methods will initially use concrete, tactile manipulatives before developing into informal jottings and, when the child is ready, abstract methods which apply formal written calculation.

The children will be formally assessed in mathematics at the end of Key Stage 1 and 2 along with assessment of the children's multiplication levels at Year 4.

Base models for addition and subtraction
These methods are used in conjunction with the White Rose scheme of work which is practiced across the school. Initial methods will be applied in EYFS.

Addition

Year Group	Target	Representation, method or model	
1	Add two 1-digit numbers to 10	- Part-whole model - Ten frames (within 10) - Bead strings	- Bar model - Number shapes - Number tracks
1	Add 1 and 2-digit numbers to 20	- Part-whole model - Bar model - Number shapes - Number tracks	- Ten frames (within 10) - Bead strings (20) - Straws - Number lines (labelled)
2	Add three 1-digit numbers	- Part-whole model - Bar model	- Ten frames (within 20) - Number shapes
2	Add 1 and 2-digit numbers to 100	- Part-whole model - Bar model - Number lines (labelled)	- Number lines (blank) - Straws - Hundred square
2	Add two 2-digit numbers	- Part-whole model - Bar model - Number lines (blank) - Straws	- Base 10 - Place value counters - Column addition
3	Add with up to 3-digits	- Part-whole model - Bar model	- Base 10 - Place value counters - Column addition
4	Add with up to 4-digits	- Part-whole model - Bar model	- Base 10 - Place value counters - Column addition
5	Add with more than 4-digits	- Part-whole model - Bar model	- Place value counters - Column addition
5	Add with up to 3 decimal places	- Part-whole model - Bar model	- Place value counters - Column addition

Year: 4

Base 10 and place
value counters are
the most effective
manipulatives when
adding numbers with
up to 4 digits.
Ensure children write
out their calculation
alongside any
concrete resources so
they can see the links
to the written column
method.
Plain counters on a
place value grid can
also be used to
support learning.

Subtraction

Year Group	Target	Representation, method or model	
1	Subtract two 1-digit numbers to 10	- Part-whole model - Ten frames (within 10) - Bead strings	- Bar model - Number shapes - Number tracks
1	Subtract 1 and 2-digit numbers to 20	- Part-whole model - Bar model - Number shapes - Number tracks	- Ten frames (within 10) - Bead strings (20) - Straws - Number lines (labelled)
2	Subtract 1 and 2-digit numbers to 100	- Part-whole model - Bar model - Number lines (labelled)	- Number lines (blank) - Straws - Hundred square
2	Subtract two 2-digit numbers	- Part-whole model - Bar model - Number lines (blank) - Straws	- Base 10 - Place value counters - Column subtraction
3	Subtract with up to 3-digits	- Part-whole model - Bar model	- Base 10 - Place value counters - Column subtraction
4	Subtract with up to 4-digits	- Part-whole model - Bar model	- Base 10 - Place value counters - Column subtraction
5	Subtract with more than 4-digits	- Part-whole model - Bar model	- Place value counters - Column subtraction
5	Subtract with up to 3 decimal places	- Part-whole model - Bar model	- Place value counters - Column subtraction

Addition and subtraction glossary of terms

Glossary

Addend - A number to be added to another.
Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.
Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.
Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.

Total - The aggregate or the sum found by addition.

Base models for multiplication and division

Applying times tables

Times tables will be taught across Newchurch with key targets addressed from years 2 to 4 . This will align with standardised testing in year 4 . The use of programmes such as TTRockstars will be used to supplement the acquisition and application of multiplication and division facts.

-0000000000-000000000-000000000-

Skill: 9 times table														Year: 4
009000009000000					1			5	6	7	8 (9)	9	10	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					11	1213	114	15	16	17	(18) 1	19	20	
					21	22	324	25	26	(27)	282	29	30	
					31	323	334	35	(30)	37	38	39	40	
					${ }^{41}$	424	34	(45)	46	47	484	49	50	
9	18	27	36	45	51	525	36	55	56	57	58	59	60	
54	63	72	81	90	61	52	$3{ }^{3} 6$	65	66	67	686	69	70	

Year: 4
Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square

Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100

Multiplication

Year Group	Target	Representation, method or model	
1/2	Solve one-step problems with multiplication	- Counters - Ten frames - Bead strings	- Bar model - Number shapes - Number lines
3/4	Multiply 2-digit and 1-digit numbers	- Place value counters - Base 10	- Short written method - Expanded written method
4	Multiply 3-digit and 1-digit numbers	- Place value counters - Base 10	- Short written method
5	Multiply 4-digit and 1-digit numbers	- Place value counters	- Short written method
5	Multiply 2-digit and 2-digit numbers	- Place value counters - Base 10	- Short written method - Grid method
5	Multiply 2-digit and 3-digit numbers	- Place value counters	- Short written method - Grid method
5/6	Multiply 2-digit and 4-digit numbers	- Formal written method	

Multiplication guidance
Skill: Solve 1-step problems using multiplication

Skill: Multiply 4-digit numbers by 1-digit numbers					Year: 5
		3 H 8 4		478 0 6 3 8	When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Division

Year Group	Target	Representation, method or model	
1/2	Solve one-step problems with division (sharing)	- Arrays - Counters	- Bar model - Real life objects
1/2	Solve one-step problems with division (grouping)	- Real life objects - Bead strings - Number shapes - Arrays	- Ten frames - Number lines - Counters
3	Divide 2-digit numbers by a 1-digit number (no exchange sharing)	- Straws - Base 10 - Bar model	- Place value counters - Part-whole model
3	Divide 2-digit numbers by a 1-digit number (sharing with exchange)	- Straws - Base 10 - Bar model	- Place value counters - Part-whole model
3/4	Divide 2-digit numbers by a 1-digit number (sharing with remainders)	- Straws - Base 10 - Bar model	- Place value counters - Part-whole model
4/5	Divide 2-digit numbers by a 1-digit number (grouping)	- Place value counters - Counters	- Place value grid - Written short division
4	Divide 3-digit numbers by a 1-digit number (sharing with exchange)	- Base 10 - Bar model	- Place value counters - Part-whole model
4/5	Divide 3-digit numbers by a 1-digit number (grouping)	- Place value counters - Counters	- Place value grid - Written short division
5	Divide 4-digit numbers by a 1-digit number (grouping)	- Place value counters - Counters	- Place value grid - Written short division
6	Divide multi-digits by 2-digit numbers (short division)	- Written short division	- List of multiples
6	Divide multi-digits by 2-digit numbers (long division)	- Written long division	- List of multiples

| Skill: Solve 1-step problems using multiplication (sharing) | Year: $1 / 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| There are 20 apples altogether. | Children solve
 problems by sharing
 amounts into equal
 groups.
 In Year 1, children use
 concrete and pictorial
 representations to
 solve problems. They
 are not expected to
 record division
 formally. |
| In Year 2, children are | |

Skill: Solve 1-step problems using division (grouping) \quad| Year: $1 / 2$ |
| :--- |

Multiplication and division glossary of terms

Glossary

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division

Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

Visual Calculation Policy and Visual Fractions Policy

The methods above will operate in conjunction with the Newchurch Visual Calculation Policy and Visual Fractions Policy. Both offer systematic and progressive approaches to the acquisition of facts, application of methods and understanding of processes when calculating. These facts will be on display in all classes and referred to within the teaching practice during modelling.

These policies have been created cooperatively with the support of the Sense of Number consultancy group.

A2b: Counting On rildiging 103 Nuntber

FF: Equivalent Fractions
 6

